Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
4
всего попыток:
15
Рассмотрим последовательность y0, y1, y2,..., где yi - 32-битные случайные целые числа, т.е. 0≤yi<232, и все значения y равновероятны. Последовательность xi задается рекурсивно следующим образом:
Ясно, что в конце концов появится такой индекс N для которого xi окажется равным 232-1 при всех i≥N. Найдите математическое ожидание величины N2. Результат умножьте на миллион и округлите вниз до целого.
Задачу решили:
1
всего попыток:
1
Обозначим через f(n) количество способов, которыми можно построить башню 3×3×n из блоков 2×1×1. Блоки можно вращать произвольным образом. При этом башни, отличающиеся поворотом или симметрией, считаются различными. Например, f(2) = 229, f(4) = 117805, f(6) = 64647289, f(63) mod 123456789 = 75292539, f(66) mod 123456789 = 56150940. Здесь a mod q означает остаток от деления a на q. Найдите f(612345) mod 123456789.
Задачу решили:
1
всего попыток:
2
В этой задаче рассматривается еще одна игра, похожая на ним, где два игрока по очереди берут камни из двух куч. Каждым ходом игрок берет камни из одной кучи в количестве, кратном количеству камней в другой куче. Как обычно, проигрывает тот, кто не может сделать очередной ход, т. е. когда в одной из куч камней не осталось. Опишем начальную позицию в виде упорядоченной пары чисел. Например, пара (6, 14) соответствует положению, при котором в меньшей куче 6 камней, а в большей — 14. В этом случае первый игрок может взять из большей кучи 6 или 12 камней. Выигрышной называется позиция, которая позволяет первому игроку выиграть при верном выборе стратегии. Остальные позиции называются проигрышными. Например, позиции (1,5), (2,6) и (3,12) — выигрышные, поскольку первый игрок может первым же ходом забрать все камни из второй кучи. Позиции (2,3) и (3,4) — проигрышные, поскольку при любом ходе первого игрока второй участник получает выигрышную позицию. Обозначим через Z(N) сумму (yi-xi) для всех проигрышных позиций (xi,yi), 0 < xi< yi ≤ N. Можно проверить, что Z(10) = 27 и Z(104) = 24319983959. Найдите остаток от деления Z(1016) на 710.
Задачу решили:
1
всего попыток:
1
Рассмотрим пару последовательностей an и s n , заданных следующим образом: a1 = 1, s1 = 1, an = sn-1 mod n, sn = sn-1+ an×n. (Здесь и далее "x mod y" означает остаток от деления x на y.) Первые 10 элементов последовательности an: 1,1,0,3,0,3,5,4,1,9. Первые 10 элементов последовательности sn: 1,3,3,15,15,33,68,100,109,199. Обозначим через h(N,M) количество таких пар (p,q), для которых 1≤p≤q≤N и (sp + sp+1 +… + sq-1 + sq ) mod M = 0 Можно проверить, что h(10,10)=5, а соответствующие пары – (1,6), (4,5), (4,9), (6,9) и (8,8). h(104,103)= 107796. Найдите h(1012,106).
Задачу решили:
1
всего попыток:
4
Широко известна игра, где один из участников задумывает целое число, а другой пытается его угадать, задавая вопросы. В этой задаче исследуется вариант такой игры, когда задумывают натуральное число из промежутка [1,n], а в качестве вопросов разрешается называть натуральные числа из этого же интервала. При этом стоимость каждого вопроса равна названному числу. Допускаются ответы трех видов:
Требуется определить задуманное число и при этом минимизировать суммарную стоимость вопросов (в дальнейшем – цена игры). Для данного числа n назовем стратегию оптимальной, если она минимизирует цену игры для самого неудачного задуманного числа. Например, при n=3 наилучшим первым ходом будет число "2". После этого при любом ответе можно будет точно определить задуманное число, поэтому больше вопросов не потребуется, и цена игры будет равна 2. Если n=8, мы могли бы выбрать в качестве стратегии "бинарный поиск". Если первым ходом мы назовем число "4", а задуманное число будет больше, чем 4, нам потребуется еще два вопроса. Пусть вторым ходом мы называем число "6". Если задуманное число больше, чем 6, нам потребуется еще один ход, скажем, "7", и цена игры составит 4+6+7=17. Мы можем существенно улучшить нашу стратегию для n=8, если первым ходом назовем число "5". Если задуманное число больше, чем 5, то вторым ходом мы можем назвать число "7", и этого будет достаточно для нахождения задуманного. Тогда цена игры составит 5+7=12. Если же задуманное число меньше, чем 5, то для его определения достаточно вторым и третьим ходом назвать "3" и "1", а цена игры составит 5+3+1=9. Поскольку 12 > 9, в худшем случае цена игры при этой стратегии будет равна 12. Получается, что данная стратегия более выгодна, чем предыдущая, и оказывается, что она оптимальна, то есть никакая другая стратегия не может гарантировать для n=8 результат меньший, чем 12. Пусть C(n) – максимальная цена игры, которая может получиться для оптимальной стратегии в худшем случае. Тогда C(1) = 0, C(2) = 1, C(3) = 2 и C(8) = 12. Можно подсчитать, что C(100) = 400. Найдите С(500000).
Задачу решили:
4
всего попыток:
6
Круглое болото разбито на секторы, перенумерованные по часовой стрелке числами от 1 до 500. Лягушка, сидящая в одном из секторов, может прыгнуть в один из двух соседних секторов с равной вероятностью. Перед тем, как прыгнуть, лягушка квакает. Если номер сектора, в котором сидит лягушка, является простым числом, она с вероятностью 2/3 квакает "P" и с вероятностью 1/3 квакает "N". Если номер сектора, в котором сидит лягушка, не является простым числом, она с вероятностью 2/3 квакает "N" и с вероятностью 1/3 квакает "P". Предположим, что в начальный момент лягушка может занимать любой из секторов с равной вероятностью. Подсчитайте вероятность того, что после 15 прыжков лягушачью песнь можно будет закодировать последовательностью PPPPNNPPPNPPNPN. Результат представьте в виде несократимой дроби, а в качестве ответа укажите ее числитель.
Задачу решили:
1
всего попыток:
3
Бесконечная последовательность a(n) определена для всех целых n следующим образом: Легко видеть, что , , , где e = 2,7182818... – основание натурального логарифма.
Общий член последовательности a(n) можно записать в виде с натуральными коэффициентами A(n) и B(n). Например, Найдите остаток от деления A(109) + B(109) на 77 777 777.
Задачу решили:
0
всего попыток:
0
На каждую клетку доски N×N положили по шашке, окрашенной в белый цвет с одной стороны и в черный цвет с другой. Каждым ходом разрешается перевернуть одну шашку, а вместе с нею N-1 шашек, стоящих на одной с ней вертикали, и N-1 шашек, стоящих на одной с ней горизонтали. Таким образом, каждым ходом игрок должен перевернуть 2×N-1 шашку. Игра заканчивается, когда все шашки будут стоять белой стороной вверх. Ниже приведен пример игры для доски 5×5.
Несложно проверить, чтобы закончить игру из данной начальной позиции, нужно как минимум 3 хода. Пусть строки и столбцы перенумерованы целыми числами от 0 до N-1. Построим на доске N×N начальную конфигурацию CN. Для этого на клетку с координатами x и y положим шашку черной стороной вверх, если (N-1)2≤x2+y2<N2, и белой стороной вверх в противном случае. Конфигурацию C5 мы видели в приведенном примере. Пусть T(N) – минимальное количество ходов, необходимых для окончания игры из начального положения CN (если это невозможно T(N) = 0). Ясно , что T(1)=T(2)=1. Мы видели, что T(5)=3. Можно проверить, что T(10)=29, а T(1000)=395253. Найдите сумму T(k!) для 1≤k≤12.
Задачу решили:
2
всего попыток:
3
Сферическим треугольником называют фигуру на поверхности сферы, ограниченную дугами больших кругов, имеющими попарно общие концы.
Пусть C(r) – сфера с центром в начале координат (0,0,0) и радиусом r. Пусть Z(r) – множество точек сферы C(r) с целыми координатами. Пусть T(r) – множество сферических треугольников с вершинами, принадлежащими Z(r). Вырожденные сферические треугольники с вершинами, принадлежащими одному большому кругу, не включаются в T(r). Пусть A(r) – наименьшая площадь треугольника из T(r), а B(r) =(4πr2)/A(r) – величина, обратная доле площади сферы, которую занимает наименьший сферический треугольник. Например, A(14) ≈3,294040, а B(14) ≈ 748. Найдите максимальное значение B(r) для натуральных r, не превышающих 50. Результат округлите до ближайшего целого.
Задачу решили:
2
всего попыток:
9
Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными. Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32). Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения: 11 = 2 + 9 = (21×30 + 20×32) 11 = 8 + 3 = (23×30 + 20×31) Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2. Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641. Найдите сумму простых q < 1000000, для которых P(q)=2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|