img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил решение задачи "Разноцветные шары" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 5
всего попыток: 13
Задача опубликована: 20.06.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовем треугольник с целочисленными сторонами a≤b≤c слегка тупоугольным, если его стороны удовлетворяют равенству
a2 + b2 = c2 - 1.
Найдите сумму периметров всех различных слегка тупоугольных треугольников, стороны которых не превышают 30 000 000.

Задачу решили: 4
всего попыток: 13
Задача опубликована: 05.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим окружность, заданную тремя точками (0,0), (N,0) и (N,N).
Обозначим через f(N) количество точек с целочисленными координатами, лежащих на этой окружности.
Можно показать, что f(10000)=36.

Найдите сумму  таких натуральных N≤1011, для которых f(N) = 588.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 05.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для заданного множества точек на плоскости М определим выпуклую дыру H как многоугольник, все вершины которого принадлежат множеству М, и ни одна точка из М не содержится во внутренней области H (на сторонах многоугольника точки лежать могут).
В качестве примера на рисунке ниже показано множество М из 20 точек и несколько из заданных им выпуклых дыр.

Красным цветом показана выпуклая дыра наибольшей площади: ее площадь составляет 1049694,5 единиц, и для данного множества М нет выпуклых дыр с большей площадью.

Для нашего примера мы использовали первые 20 точек, полученные с помощью генератора случайных чисел следующим образом. Точка с номером k имеет координаты (T2k-1, T2k), а псевдослучайные числа Tk получены при помощи рекуррентной формулы:

Sn+1 = Sn2 mod 50515093,
где S0 = 290797
и
Tn =(Sn mod 2000) - 1000.

Тогда координаты первых трех точек будут:
(527,144), (-488,732), (-454,-947).
Постройте с помощью указанного генератора псевдослучайных чисел множество М из первых 500 точек  и найдите для него выпуклую дыру наибольшей площади. Ответом задачи является периметр указанной дыры, округленный до целого.

Задачу решили: 2
всего попыток: 7
Задача опубликована: 09.01.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Дан треугольник ABC, длины сторон которого выражаются различными целыми числами: |CB|<|AC|<|AB|.
Биссектрисы треугольника пересекают его стороны в точках E, F и G, как показано на рисунке:

eu257.gif

Отрезки EF, EG и FG разбивают треугольник ABC на четыре треугольника меньшего размера: AEG, BFE, CGF и EFG.
Можно показать, что отношения площадей этих треугольников всегда выражаются рациональными числами, но иногда это отношение оказывается целым.
Найдите, сколько существует различных треугольников ABC, для которых отношение площадей треугольника ABC и треугольника AEG выражается целым числом, а |CB|<|AC|<|AB|≤50 000 000.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 27.02.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В этой задаче мы будем рассматривать треугольники на плоскости со следующими свойствами:

  • Координаты их вершин – целые числа;
  • Центр описанной окружности совпадает с началом координат;
  • Ортоцентр (точка пересечения высот) имеет координаты (5, 0).

Существует девять таких треугольников с периметром, не превышающим 50. Все они показаны на рисунке

eu264.png

A(-4, 3), B(5, 0), C(4, -3)
A(4, 3), B(5, 0), C(-4, -3)
A(-3, 4), B(5, 0), C(3, -4)


A(3, 4), B(5, 0), C(-3, -4)
A(0, 5), B(5, 0), C(0, -5)
A(1, 8), B(8, -1), C(-4, -7)


A(8, 1), B(1, -8), C(-4, 7)
A(2, 9), B(9, -2), C(-6, -7)
A(9, 2), B(2, -9), C(-6, 7) 
Сумма их площадей равна 445.
Найдите все треугольники, обладающие указанными свойствами, периметр которых не превышает 105.
Легко показать, что сумма их площадей является целым числом. Она и будет ответом к этой задаче.

Задачу решили: 4
всего попыток: 8
Задача опубликована: 21.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим треугольник, длины сторон которого – целые числа a, b и с, удовлетворяющие неравенству a ≤ b ≤ c.
Будем называть такой треугольник примитивным, если наибольший общий делитель длин его сторон равен 1, т.е. gcd(a, gcd(b,c))=1.

Подсчитайте, сколько существует различных примитивных треугольников, периметр которых – семизначное число.

Задачу решили: 3
всего попыток: 12
Задача опубликована: 11.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим треугольники, длины сторон которых выражаются целыми числами, и, кроме того, градусная мера хотя бы одного из углов — тоже целое число. Ограничимся при этом треугольниками с периметром, не превышающим 108.
Найдите сумму их периметров.

Задачу решили: 4
всего попыток: 9
Задача опубликована: 09.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим треугольник со сторонами 6,8 и 10. Легко подсчитать, что и его периметр, и его площадь равны 24, а отношение площади к периметру равно 1.

У треугольника со сторонами 13,14 и 15 периметр равен 42, а площадь — 84 единицам. Отношение площади этого треугольника к его периметру равно 2.

Подсчитайте, сколько существует различных треугольников с целыми сторонами, для которых отношение площади к периметру равно целому числу, не превышающему 1000.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 20.08.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Обозначим через C(x,y) окружность, проходящую через точки (x, y), (x,y+1), (x+1,y) и (x+1,y+1).

Обозначим через E(m,n) объединение m×n окружностей C(x,y), где 0≤x<m, 0≤y<n, а x, y, m и n – целые числа.

Эйлеровым циклом на E(m,n) называется замкнутый путь, включающий каждую дугу каждой окружности ровно один раз. В этой задаче мы будем рассматривать только те эйлеровы циклы, которые не имеют самопересечений. При этом участки цикла могут касаться друг друга в точках с целыми координатами, но не должны пересекаться.

На рисунке показан пример эйлерова цикла без самопересечений на E(3,3).

eu289.gif

Обозначим через L(m,n) количество эйлеровых циклов без самопересечений на E(m,n).

Например, L(1,2) = 2, L(2,2) = 37 и L(3,3) = 104290.

Найдите остаток от деления  L(6,13) на 613.

 
Задачу решили: 3
всего попыток: 3
Задача опубликована: 01.10.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим две окружности, у которых и центры, и точки пересечения имеют целочисленные координаты. Выпуклую область, ограниченную такой парой окружностей будем называть линзой, если она не имеет внутренних точек с целочисленными координатами. Радиусы окружностей, ограничивающих линзу, назовем радиусами линзы. На рисунке ниже показаны следующие окружности:

C0: x2+y2=25
C1: (x+4)2+(y-4)2=1
C2: (x-12)2+(y-4)2=65

eu295.gif

Линзы, заключенные между окружностями C0 и C1 и между C0 и C2, закрашены красным.

Обозначим через L(N) количество различных пар чисел (r1,r2), для которых существует линза с радиусами r1 и r2, и 0<r1≤ r2≤ N.

Можно проверить, что L(10) = 30 и L(100) = 3442.

Найдите Σ L(10k), где 1 ≤ k ≤ 5.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.