Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
16
Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей. На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?
Задачу решили:
12
всего попыток:
14
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трёх из них образуют арифметическую прогрессию с разностью 1. Сколько существует таких квадратов с целочисленной стороной?
Задачу решили:
9
всего попыток:
12
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади a, b, c трёх из них образуют арифметическую прогрессию с разностью 1. Найти наибольшую площадь d внутреннего треугольника такую, что d – точный квадрат.
Задачу решили:
14
всего попыток:
21
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трех цветных треугольников, кроме белого, – соседние члены арифметической прогрессии с разностью 1. Сколько существует таких квадратов с целочисленной стороной?
Задачу решили:
19
всего попыток:
39
Сколько действительных корней имеет уравнение 100 cosx =√x?
Задачу решили:
6
всего попыток:
13
Найдите количество частей, на которые разбивается пятимерное вещественное пространство гиперплоскостями x1=0, x2=0, x3=0, x4=0, x5=0,
Задачу решили:
20
всего попыток:
30
При каком значении параметра P система: x1 + 2x2 + 4x3 + 8x4 + 8x5 = 16 не имеет решения?
Задачу решили:
23
всего попыток:
25
В правильной шестиугольной призме все ребра равны. Найдите угол между прямыми A1B и B1E в градусах.
Задачу решили:
15
всего попыток:
19
В правильной треугольной пирамиде SABC с основанием ABC точки M и K – середины рёбер AB и SC соответственно, а точки N и L отмечены на рёбрах SA и BC соответственно так, что отрезки MK и NL пересекаются, а |AN|=4|NS|. Найдите отношение |CL|:|LB|.
(Задача из реального теста ЕГЭ 2024.)
Задачу решили:
14
всего попыток:
17
Два эллипса каждый с минимальной суммой натуральных a и b (a > b) заданы в канонической форме: x2/a2 + y2/b2 = 1. На одном лежат ровно 36 точек с целочисленными координатами, а на другом ровно 28 точек с целочисленными координатами. Найти отношение площадей эллипсов меньшей к большей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|