Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
82
Какое .максимальное число шаров радиуса 1/2 можно вложить в прямоугольный параллелепипед размером 10×10×1.
Задачу решили:
27
всего попыток:
80
В кубе ABCDA1B1C1D1 с ребром 6 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользит» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке. Объём тела, ограниченного этой поверхностью, будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
31
всего попыток:
54
Элементами матрицы 3х3 являются натуральные числа от 1 до 9, взятые по одному разу. Найдите наибольшее значение определителя этой матрицы.
(Задачу придумал и решил сам, в печати не приходилось встречать такую задачу. Не уверен, что ее до сих пор никто не придумал.)
Задачу решили:
14
всего попыток:
16
Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»: Например: 16380 ⊕ 7 = [(16380+7) / 214] + (16380+7) mod 214 = 1 + 3 = 4 Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.
Задачу решили:
24
всего попыток:
51
На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням. У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.
Задачу решили:
22
всего попыток:
24
В правильной треугольной призме ABCA1B1C1 на ребрах AC и A1C1 отмечены соответственно точки M и K так, что |AM|:|MC| = 11/5, |A1K|: |KC1|= 3/5, точка N – середина ребра BC. Найти AA1, если AA1 равно расстоянию от точки C1 до плоскости MNK и |AB| = 16.
Задачу решили:
20
всего попыток:
32
В куб ABCDA1B1C1D1 вписан правильный тетраэдр D1AB1C. Куб, вместе c тетраэдром, вращается вокруг диагонали BD1 куба. При этом образуются два тела вращения: одно задается вращением куба, другое – вращением тетраэдра. Найдите объёмы этих двух тел вращения, и в ответе укажите отношение меньшего объёма к большему.
Задачу решили:
22
всего попыток:
56
В квадратной таблице 360х360 строки и столбцы «пронумерованы» числами от 1° до 360°. В каждой ячейке этой таблицы записано число, равное произведению синуса «номера» строки на косинус «номера» столбца. Сколько рациональных чисел в этой таблице?
Задачу решили:
19
всего попыток:
25
Дана функциональная последовательность fn(x): Найти предельную функцию g(x) при n стремящемся к бесконечности.
Задачу решили:
21
всего попыток:
27
В куб вписан правильный октаэдр наибольшего объёма. В каком отношении вершины октаэдра делят ребра этого куба? В ответе укажите отношение меньшей части к большей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|