Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
115
Действительное число x удовлетворяет условию: 1/[x]=1/[2x]+1/[3x]+1/[5x], где [x] - целая часть от x. Пусть m - наибольшее положительное, а M - наименьшее положительное значения такие, что m≤x≤M, и M+m представляется в виде нескоратимой дроби p/q. Чему равно p+q?
Задачу решили:
24
всего попыток:
116
Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.
Задачу решили:
39
всего попыток:
92
Функция f: N→N такова, что f(f(n))+f(n+1)=n+2 для всех натуральных n. Чему равно f(2014)?
Задачу решили:
45
всего попыток:
158
Найти количество функций f: R→R таких, что для всех действительных x и y верно f(x+y)=f(x)f(y)f(xy).
Задачу решили:
34
всего попыток:
132
Найдите количество пар действительных чисел (a, b) таких, что если c является корнем уравнения x2+ax+b=0, то и c2-2 также является корнем.
Задачу решили:
35
всего попыток:
57
Пусть действительные числа x и y такие, что x2+y2=(x/y+y/x)2. Пусть m - наибольшее, а M - наименьшее возможные числа такие, что верно всегда m≤(x3y3+x2y+xy2+1)/x3y3≤M. Найдите M+m.
Задачу решили:
33
всего попыток:
47
Рассмотрим пары неотрицательных целых чисел (xi,yi) удовлетворяющих равенству: 2x2+x=3y2+y таких, что x1+y1 < x2+y2 < .... Найдите сумму первых 4-х пар значений x1+y1+x2+y2+x3+y3+x4+y4.
Задачу решили:
51
всего попыток:
81
Известно: a+b+c+d=0 Найти 1/a+1/b+1/c+1/d.
Задачу решили:
69
всего попыток:
99
Пусть a+b+c=1 и a, b, c >0. Найдите минимум a2+2b2+c2.
Задачу решили:
19
всего попыток:
96
Найдите максимальное целое число n такое, что существуют n действительных чисел x1, x2, ..., xn которые удовлетворяют неравенству для всех 1 ≤ i < j ≤ n:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|