img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 98
всего попыток: 136
Задача опубликована: 06.07.12 08:00
Прислал: nauru img
Источник: Олимпиада по математике г.Санкт-Петербурга
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какие цифры не может оканчиваться натуральное число [x]+[3x]+[6x] если х > 0 - вещественное число (через [x] обозначается целая часть x , т.е наибольшее целое число, не превосходящее x). В ответе укажите произведение цифр.

Задачу решили: 40
всего попыток: 48
Задача опубликована: 10.06.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
баллы: 100

Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.

Задачу решили: 36
всего попыток: 60
Задача опубликована: 05.07.13 09:18
Прислал: nauru img
Источник: Кубок Колмогорова 2008
Вес: 1
сложность: 4 img
баллы: 100

Дана вписанная n-угольная пирамида SA1A2…An. Сфера ? касается всех её боковых ребер SAi, а также касается плоскости основания в точке K. При каком минимальном n точка K обязательно является центром окружности, описанной около основания?

Задачу решили: 41
всего попыток: 99
Задача опубликована: 16.09.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 2 img
баллы: 100

В конечной последовательности, состоящей из натуральных чисел, встречается ровно 2006 различных чисел. Известно, что если из какого-нибудь члена этой последовательности вычесть 1, то в полученной последовательности будет встречаться не менее 2006 различных чисел. Найдите минимальную возможную сумму членов исходной последовательности

Задачу решили: 89
всего попыток: 99
Задача опубликована: 11.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2007
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Про функцию f(x) известно, что f(1) = 1, и для любых x, y выполнено тождество f(x+y) = 2xf(y)+3yf(x). Найдите f(15).

Задачу решили: 59
всего попыток: 62
Задача опубликована: 25.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: sacred_shaved_... (Никита Гладков)

Найдите максимальное значение f(1) если  f: Z ? Z такая, что для любых целых чисел х и у выполнено равенство f(f(x)+y+1) = x+f(y)+1.

Задачу решили: 55
всего попыток: 69
Задача опубликована: 24.02.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найдите f(2012) если f: NxN такая, что f(m–n+f(n)) = f(m)+f(n) при всех m, n из N.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.