img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 10
+ЗАДАЧА 762. Хитрое уравнение (И. Андреев, Н. Кушпель, Ф. Бахарев, Ф. Петров)
  
Задачу решили: 128
всего попыток: 136
Задача опубликована: 11.07.12 08:00
Прислал: nauru img
Источник: Олимпиада по математике г.Санкт-Петербурга
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Решите уравнение в натуральных числах 
n3-5n+10=2k. Чему равно nk?

+ 4
+ЗАДАЧА 763. Граф (Д. Карпов)
  
Задачу решили: 11
всего попыток: 72
Задача опубликована: 13.07.12 08:00
Прислал: nauru img
Источник: Олимпиада по математике г.Санкт-Петербурга
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: ChLD (Анатолий Лакеev)

В графе 301 вершина. В любом множестве А, содержащем не менее трех вершин этого графа, можно указать три вершины, каждая из которых смежна не более чем с 200 вершинами из А. Какое максимальное количество ребер может быть в этом графе? 

+ 9
+ЗАДАЧА 802. 20 чисел (Голованов А.)
  
Задачу решили: 41
всего попыток: 169
Задача опубликована: 12.10.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Саша задумал 20 натуральных чисел и вычислил все возможные произведения, составленные из пар задуманных чисел. Получилось 190 произведений. Найдите наибольшее число произведений гарантированно заканчивающихся на одну и ту же цифру.

(Хотелось бы иметь математическое решение, а не программу.)
+ 10
+ЗАДАЧА 803. Числа (Ростовский Д.)
  
Задачу решили: 117
всего попыток: 132
Задача опубликована: 15.10.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Натуральные числа х,у меньше 2009. Известно,что х делится на 54, у делится на 31, х+у делится на 85. Найти остаток от деления  х-у на 23

+ 17
  
Задачу решили: 69
всего попыток: 71
Задача опубликована: 07.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.

Задачу решили: 68
всего попыток: 69
Задача опубликована: 12.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC 

Задачу решили: 65
всего попыток: 77
Задача опубликована: 19.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pvpsaba (Saba Dzmanashvili)

Дан выпуклый четырехугольник АВСD. Серединные перпендикуляры к диагоналям BD и AC пересекают AD в точках  X и Y соответственно, причем X лежит между А и Y. Оказалось что прямые BX и CY параллельны. Найти угол (в градусах) между BD и АС.

Задачу решили: 72
всего попыток: 165
Задача опубликована: 23.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

BC — основание равнобедренного треугольника ABC, BD — биссектриса угла B. Выполнено равенство BC = AD+BD. Найдите угол A (в градусах).

Задачу решили: 64
всего попыток: 66
Задача опубликована: 26.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Серединные перпендикуляры к диагоналям BD и АС вписанного четырехугольника АВСD пересекают сторону AD  в точках X и Y соответственно. Пусть М середина ВС и расстояние от М до прямой ВХ = k, а расстояние до прямой СY равно u. Найти отношение k/u. 

Задачу решили: 69
всего попыток: 88
Задача опубликована: 30.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.