img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 21
всего попыток: 106
Задача опубликована: 27.04.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: zmerch

В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?

Задачу решили: 23
всего попыток: 107
Задача опубликована: 21.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.

Задачу решили: 37
всего попыток: 58
Задача опубликована: 21.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.

Задачу решили: 41
всего попыток: 63
Задача опубликована: 17.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Пусть A - матрица 16x16 с элементами aij=НОД(i,j) для 1≤i,j≤16. Найдите ее определитель.

Задачу решили: 40
всего попыток: 54
Задача опубликована: 29.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Пусть Q(x)=x3+6. Определим последовательность полиномов Pn(x):

P1(x)=Q(x), Pn+1(x)=Q(Pn(x)), n=1,2,...

Найти сумму всех действительных решений уравнения P2014(x)=x.

Задачу решили: 37
всего попыток: 41
Задача опубликована: 15.07.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Пусть функция f(x) не равная тождественно нулю удовлетворяет условию:
f(x+y2n+1)=f(x)+f(y)2n+1 для всех натуральных n и действительных x и y. Известно, что f'(0)>0, найдите f'(10).

Задачу решили: 52
всего попыток: 89
Задача опубликована: 05.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Oleg2013

Известно, что x^2+xy+y^2=0. Найти (\frac{x}{x+y})^{2001}+(\frac{y}{x+y})^{2001}.

Задачу решили: 62
всего попыток: 67
Задача опубликована: 18.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех натуральных чисел n таких, что сумма цифр числа 5n равна 2n.

Задачу решили: 39
всего попыток: 68
Задача опубликована: 18.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.

Задачу решили: 53
всего попыток: 116
Задача опубликована: 05.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Дана функция f(x) = |4 − 4|x||− 2. Сколько решений имеет уравнение f(f(x)) = x?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.