Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
100
всего попыток:
389
Сколько решений в натуральных числах имеет уравнение 1/x+1/y=1/2010?
Задачу решили:
126
всего попыток:
268
Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?
Задачу решили:
65
всего попыток:
99
Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)
Задачу решили:
84
всего попыток:
133
Найдите геометрическую прогрессию максимальной длины, все члены которой — различные целые числа из промежутка от 100 до 1000 включительно. В ответе укажите наибольший член этой прогрессии.
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Задачу решили:
72
всего попыток:
130
Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)
Задачу решили:
102
всего попыток:
128
Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ являются членами последовательности {an}?
Задачу решили:
129
всего попыток:
209
Найдите наименьшее значение выражения при .
Задачу решили:
65
всего попыток:
179
Сколько процентов составляет вероятность того, что среди 5 (случайно выбранных) точек на сфере найдутся 4, лежащие на одной замкнутой полусфере? (Замкнутая полусфера — это полусфера, включающая собственную границу.)
Задачу решили:
80
всего попыток:
123
В соревновании, состоящем из N состязаний, участвовали Андрей, Боря и Вася. За первое место в каждом состязании присуждалось x, за второе – y, за третье – z очков, где x>y>z>0 и все они целые. В итоге Андрей набрал 22, а Боря и Вася – по 9 очков. Боря победил в забеге на 100 метров. Найдите N и определите, кто был вторым в прыжках в высоту. В ответе введите без пробела сначала N, а затем номер участника по алфавиту: 1 (Андрей), 2 (Боря) или 3 (Вася).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|