Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
108
всего попыток:
505
В рамках новой программы исследования околоземного пространства её руководители хотят запусить три спутника, которые будут летать на одной и той же высоте, делая один оборот вокруг Земли за 15 часов. Спутники нужно вывести на их орбиты так, чтобы в течение нескольких часов пути спутников не пересекались, т.е. чтобы никакие два спутника не побывали за это время в одной и той же точке околоземного пространства. Какого наибольшего целого числа часов можно добиться, правильно выбрав орбиты спутников? С математической точки зрения речь идёт о непересекающихся дугах больших окружностей сферы (большая окружность — это пересечение сферы с плоскостью, проходящей через её центр). Например, если спутников только два, а не три, то ответ на вопрос задачи — 14. Для этого их надо запустить так, чтобы один пролетал над Северным полюсом в тот момент, когда другой пролетает над Южным. И через полчаса после их одновременного прохода полюсов у нас заведомо будет 14 часов.
Задачу решили:
388
всего попыток:
753
p ∫|sin(2009x)|dx = ? 0
Задачу решили:
89
всего попыток:
327
Какое минимальное число различных решений, лежащих на отрезке [−π,π], может иметь тригонометрическое уравнение a cos(9x) + b sin(16x) + c cos(25x) + d sin(36x) = 0? (Решения данного уравнения зависят от значений его коэффициентов a, b, c и d.)
Задачу решили:
113
всего попыток:
188
В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.) Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.
Задачу решили:
209
всего попыток:
540
Сколько различных решений имеет уравнение log1/16x=(1/16)x?
Задачу решили:
131
всего попыток:
329
Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?
Задачу решили:
89
всего попыток:
173
Рассмотрим десятичные записи степеней двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,... и составим последовательность, состоящую из их первых цифр: 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4... Каждая цифра появляется среди первых n членов полученной последовательности с некоторой частотой, зависящей от n. Например, при n=12 частота появления 1 равна 1/4, 2 — 1/4, 3 — 1/12, 4 — 1/6, 5 — 1/12, 6 — 1/12, 8 — 1/12, а цифры 7 и 9 вообще не встречаются. Найдите число, обратное к предельной (при n→∞) частоте появления семёрки. Ответ округлите до ближайшего целого числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|