Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
59
всего попыток:
357
Решите уравнение xy=yx в рациональных числах. В ответе укажите количество его различных решений, удовлетворяющих неравенствам: x>y, x>11/4.
Задачу решили:
48
всего попыток:
70
Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)
Задачу решили:
57
всего попыток:
213
При скачивании файла пользователю показывается прогноз оставшегося времени, которое рассчитывается исходя из предположения, что средние скорости скачивания всего файла и его уже скачанной части одинаковы. Через 20 секунд после начала закачки файла размером 100 Мбайт ожидаемое до её окончания время составляло 1 минуту и не изменялось после этого в течение 2 минут. Сколько Кбайт/сек составляла мгновенная скорость скачивания в конце этих 2 минут? Ответ округлите до ближайшего целого числа и помните, что 1 Мбайт = 1024 Кбайт.
Задачу решили:
56
всего попыток:
159
Функция ƒ, определённая на всех векторах трёхмерного пространства, такова, что для любых действительных чисел a, b и любых векторов x, y выполняется неравенство ƒ(ax+by) ≤ max {ƒ(x), ƒ(y)}. Какое наибольшее число различных значений может принимать функция ƒ?
Это открытая задача
(*?*)
Представим отрезок гармонического ряда
Задачу решили:
49
всего попыток:
301
Вычислите
Задачу решили:
125
всего попыток:
355
Решите неравенство . В ответе укажите число его целых решений.
Задачу решили:
79
всего попыток:
205
Найдите предел 13-ой производной функции .
Задачу решили:
86
всего попыток:
151
Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.
Задачу решили:
46
всего попыток:
100
Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|