img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 88
всего попыток: 201
Задача опубликована: 13.08.09 00:31
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Andreo (Андрей Желудев)

Натуральные числа от 1 до 13 записаны в строку. Сколькими способами можно переставить их так, чтобы ни одно число не осталось на своём месте?

Задачу решили: 145
всего попыток: 245
Задача опубликована: 14.08.09 00:18
Прислала: Hasmik33 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В машинном слове 16 бит (бит — это 0 или 1). Сколько существует слов, в которых никакие две единицы не идут подряд?

Задачу решили: 97
всего попыток: 302
Задача опубликована: 18.08.09 09:50
Прислал: Vkorsukov img
Источник: "Комсомольская правда"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Маршрут автобуса состоит из 12 остановок (включая конечные). Автобус вмещает не более 20 пассажиров. Однажды автобус проехал весь маршрут из конца в конец, останавливаясь на всех остановках. Известно, что не было двух пассажиров, которые вошли, а потом и вышли на одной и той же остановке. Какое наибольшее число пассажиров могло быть перевезено автобусом при этих условиях?

Задачу решили: 414
всего попыток: 858
Задача опубликована: 03.09.09 10:22
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

Какое минимальное число раз нужно сломать шоколадку, изображённую на рисунке, так, чтобы каждый кусок состоял из двух маленьких плиток или одной большой? (Ломать сразу два куска нельзя!)

Задачу решили: 219
всего попыток: 352
Задача опубликована: 06.09.09 00:36
Прислал: arsin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

– Все-таки математики — любопытный народ, – сказал полицейский комиссар своей жене. –  Представь себе, на столе в отеле стояли наполненные стаканы. Только в одном из них был яд. Лаборатория могла проверить все стаканы, но проверка стоит времени и денег. Нам на помощь прислали профессора математики. Он подсчитал стаканы, взял первый из них, и мы проверили его первым. Я спросил его, не растратили ли мы одну проверку впустую, но он сказал, что это составляет часть оптимальной процедуры.
– Сколько было стаканов?
– Что-то между одной и двумя сотнями.
Определите точно число стаканов. (Можно проверять содержимое нескольких стаканов, смешивая жидкости из них. Для проверки достаточно всего одной капли жидкости.)

Задачу решили: 83
всего попыток: 465
Задача опубликована: 12.09.09 00:08
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Перед Вами 25 окопов в ряд. В каком-то из них сидит снайпер. У Вас в руках гранатомёт, позволяющий вдребезги разнести всё содержимое любого из окопов (сам окоп при этом остаётся цел). Сразу после того, как Вы делаете выстрел, снайпер по не известной Вам логике перебегает в соседний окоп (если Вы промазали). Остаться в том же окопе, равно как и перебежать дальше, чем в соседний окоп, он не может. Следующий выстрел. Перебежка. Выстрел. Перебежка. И так далее. Проблема в том, что ни снайпера, ни его перебежек Вы не видите.

Какое минимальное число выстрелов Вам понадобится, чтобы гарантированно ликвидировать снайпера?

(Задача носит исследовательский характер, поскольку доказательства минимальности ответа, заложенного в систему, нам не известно. Надеемся, что участники предложат такое доказательство!)
Задачу решили: 94
всего попыток: 199
Задача опубликована: 13.09.09 11:18
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?

Задачу решили: 51
всего попыток: 131
Задача опубликована: 19.09.09 00:06
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В парке оборудовано n остановок для детских паровозиков. У каждого паровозика свой маршрут, состоящий из нескольких (необязательно всех) остановок. От каждой остановки до любой другой можно доехать без пересадки, но только на одном паровозике. С каждого паровозика можно пересесть на любой другой, доехав до нужной остановки. Имеется паровозик, чей маршрут состоит ровно из трёх остановок. Найдите максимально возможное значение n.

Задачу решили: 57
всего попыток: 246
Задача опубликована: 02.10.09 11:41
Прислал: julikV img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

У Вас есть три одинаковых пластмассовых шарика, и Вы хотите выяснить, после броска с какого этажа 119-этажного небоскрёба на них начинают появляться трещины. (Например, если сбросить с 20-го, то трещины появляются, а на 19-м ещё нет.) Чтобы определить, появились ли трещины, нужно выйти на улицу и осмотреть шарик. Прежде чем выйти на улицу, Вы можете сбросить с разных этажей все имеющиеся в наличии нетреснувшие шарики. Разрешается выйти на улицу не более, чем n раз. При каком минимальном значении n ещё возможно гарантированно определить, после броска с какого именно этажа шарики начинают покрываются трещинами. Учтите, что шарик может покрыться трещинами и при падении с первого этажа, а может остаться целым и при падении с последнего.

(См. похожую задачу "Небоскрёб и стеклянные шарики")
Задачу решили: 88
всего попыток: 441
Задача опубликована: 05.10.09 10:27
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

На шахматной доске стоят 64 ладьи (на каждой клетке по ладье). Саша снимает их с доски по очереди, следуя правилу: можно снять любую ладью, которая бьёт нечётное число других оставшихся на доске ладей. Какое максимальное количество ладей удастся снять Саше? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.