img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 105
всего попыток: 136
Задача опубликована: 30.10.09 11:20
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Как посадить 9 яблонь в 10 рядов по 3 яблони в каждом? (Для особо придирчивых: сажать ряды из 4 и более яблонь не разрешается!) 

(Пожалуйста, присылайте решения только в виде файла!!!)
Задачу решили: 90
всего попыток: 124
Задача опубликована: 03.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Loks

Все вершины выпуклого многогранника расположены в целочисленных точках. Ни внутри, ни на гранях, ни на рёбрах многогранника других целочисленных точек нет. Найти наибольшее число его вершин. (Целочисленная точка — это точка, все три координаты которой являются целыми числами.)

Задачу решили: 139
всего попыток: 164
Задача опубликована: 09.11.09 12:08
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На сторонах BC и CD квадрата ABCD выбраны точки E и F так, что периметр треугольника ECF равен половине периметра квадрата. Найдите величину угла EAF в градусах.

Задачу решили: 98
всего попыток: 201
Задача опубликована: 11.11.09 21:11
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Последовательность определяется условиями: x1=2009; x2=2010; xn+1=xn−1−1/xn при n>1. Найдите n, при котором xn=0.

Задачу решили: 181
всего попыток: 270
Задача опубликована: 15.11.09 14:04
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Перед Вами тортик в форме куба, который нужно разрезать на 27 одинаковых кубиков. Какое наименьшее число разрезов Вам понадобится сделать, если разрешается резать сразу несколько кусков, которые перед этим можно как угодно переложить и перевернуть? (Каждый разрез осуществляется вдоль одной плоскости.)

Задачу решили: 74
всего попыток: 243
Задача опубликована: 19.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

По аллее длиной 100 метров гуляют старичок и старушка. Дойдя до конца аллеи каждый из них сразу же поворачивает обратно. Скорость старичка 2 км/ч, а старушки — 3 км/ч. В какой-то момент они оказались в противоположных концах аллеи. Сколько раз они встретятся в течение часа после этого? А сколько раз старушка обгонит старичка? В ответе укажите произведение двух полученных чисел. (Обгон встречей не является.)

Задачу решили: 85
всего попыток: 238
Задача опубликована: 21.11.09 15:15
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найти такое наименьшее число n, что любой выпуклый 60-угольник является пересечением n треугольников.

Задачу решили: 79
всего попыток: 210
Задача опубликована: 23.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Rep (Сергей Репин)

Положительные числа a и b таковы, что система из двух уравнений

x2+y2+z2=a, |x|+|y|+|z|=b

имеет ровно n решений. (Число n — натуральное.) Найдите сумму всех возможных значений n.

Задачу решили: 109
всего попыток: 136
Задача опубликована: 27.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Может ли число n4+4 быть простым, если n — целое и n>1?

Задачу решили: 107
всего попыток: 144
Задача опубликована: 03.12.09 13:24
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Какое наибольшее число сторон выпуклого многоугольника могут быть равны его самой длинной диагонали?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.