Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
35
всего попыток:
57
На листе клетчатой бумаги отмечено несколько узлов сетки (т.е. точек, в которых пересекаются вертикальные и горизонтальные линии) так, что внутри интервала, соединяющего любые две отмеченные точки вообще нет узлов сетки. Найдите наибольшее число отмеченных узлов.
Задачу решили:
111
всего попыток:
171
На доске написаны 13 чисел: 0, 1, 2, ..., 12. Среди них выбирают два каких-то числа a и b, стирают их, а вместо них пишут одно число ab+a+b. Описанную процедуру повторяют 12 раз. Найдите наибольшее число, которое может остаться на доске.
Задачу решили:
70
всего попыток:
104
Найдите наибольшее значение n≤2011, при котором в клетках доски n×n можно расставить фишки так, чтобы на любых двух горизонталях стояли одинаковые количества фишек, а на любых двух вертикалях — различные. (В одну клетку можно поставить не более одной фишки, а каждая фишка должна занимать ровно одну клетку.)
Задачу решили:
64
всего попыток:
156
Перед двумя игроками кучка из 1000 спичек. В начале игры первый игрок берёт из неё любое количество спичек от 1 до 999, а затем каждый из игроков по очереди берёт любое число оставшихся спичек, но не больше, чем перед этим взял другой игрок. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Какое наименьшее количество спичек должен взять в начале игры первый игрок, чтобы обеспечить себе победу при любых ходах второго игрока?
Задачу решили:
84
всего попыток:
567
Перед Вами 50 одинаковых на вид кубиков — 25 берёзовых и 25 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
34
всего попыток:
173
Перед Вами 56 одинаковых на вид кубиков — 28 берёзовых и 28 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
86
всего попыток:
111
В клетках шахматной доски 8×8 расставлены n фишек так, что любой квадрат 3×3 содержит в точности одну фишку. Найдите произведение наибольшего и наименьшего значений n.
Задачу решили:
112
всего попыток:
309
Какое наибольшее число сторон может быть у многоугольника, являющегося пересечением треугольника и четырёхугольника?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|