img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon предложил задачу "Палиндромное время" (Математика):

Турнир: Турнир Эйлера   

 
Дата проведения: 26.05.09
время с 00:00 до 23:59 (Москва)
статус: завершен
уровень сложности: 2

Организаторы: ИНТУИТ.РУ >>
Спонсоры: ИНТУИТ.РУ >>

В турнире будут представлены задачи из списка "Проект "Эйлера".

За правильное решение каждой задачи начисляется определённое количество баллов, которое уменьшается с каждым неверным ответом.

Победителем и призерами становятся те участники, кто набрал наибольшее количество баллов. Участники, набравшие одинаковое количество баллов, делят соответствующие места. Количество участников занявших одинаковые места - неограничено.

Внимание! Участие в турнире бесплатное. В нем могут принимать участие все желающие школьники, студенты и взрослые. Победителям и призёрам отправляются призы по почте.

Участие в турнире повышает рейтинг участника.

Жюри

1. Шкред Анатолий

Результаты турнира (обновлены 26.01.10 13:55)

№. Ник Страна Регион Результат Место
1. vd2t Российская Федерация Москва 1200 (из 1200) 1-10
2. Mim Беларусь ---- 1200 (из 1200) 1-10
3. MarS Российская Федерация Московская область 1200 (из 1200) 1-10
4. General Украина ---- 1200 (из 1200) 1-10
5. falagar Российская Федерация Санкт-Петербург 1200 (из 1200) 1-10
6. bahram Российская Федерация Московская область 1200 (из 1200) 1-10
7. an_na Российская Федерация Оренбургская область 1200 (из 1200) 1-10
8. Anton_Lunyov Украина ---- 1200 (из 1200) 1-10
9. And Российская Федерация Московская область 1200 (из 1200) 1-10
10. Alpha900i Российская Федерация Красноярский край 1200 (из 1200) 1-10
все результаты >>

Задачи

ЗАДАЧА 1. Жадный спуск по треугольнику
  
24.05.09 10:47
вес: 1
сложность: 1
класс: 8-10
баллы: 300
  
попыток: 0
решили: 33

Вам необходимо найти спуск по треугольнику с наибольшей суммой - от вершины до основания. Сумма считается по всем числам, через которые проходит путь. Разрешается спускаться прямо вниз, вниз-влево и вниз-вправо (смотрите пример). В ответе укажите максимальную сумму.

Пример:

3

6 2 5

3 1 9 2 3

4 3 1 1 6 2 4

3 7 8 7 8 7 9 6 7

1 1 4 9 0 5 4 8 8 8 5

3 1 5 1 9 3 2 3 2 8 4 6 1

7 0 9 0 7 0 5 1 7 0 8 6 6 3 4

5 2 7 9 4 9 5 1 7 9 1 2 5 8 6 6 3

7 1 0 4 1 2 1 4 0 2 5 2 5 4 6 0 9 4 3

2 2 0 0 8 8 1 1 4 5 2 9 1 3 0 1 9 7 3 7 5

1 5 3 5 9 7 4 4 3 6 6 6 2 5 9 8 6 7 7 8 2 0 6

2 7 9 2 1 5 6 4 0 7 8 1 0 2 0 0 0 1 1 4 8 0 1 5 9

2 3 1 3 7 6 5 2 2 2 0 5 8 6 3 2 7 6 2 3 7 4 7 1 3 1 9

5 0 7 6 1 0 1 4 8 7 4 3 6 0 0 4 9 6 0 7 2 9 5 7 4 0 4 1 7

0 9 8 8 3 8 0 2 4 4 0 5 0 0 7 2 3 3 6 5 1 2 2 6 6 2 6 9 9 8 8

6 8 1 2 0 4 4 7 3 3 6 9 7 8 7 0 4 5 4 2 9 8 2 3 2 7 2 7 4 8 0 7 9

4 8 2 8 2 2 6 6 3 0 2 3 8 5 8 5 8 7 6 6 4 7 0 8 8 8 2 6 9 0 8 5 8 3 3

7 2 9 9 8 4 3 3 7 2 0 9 2 1 9 9 5 8 6 8 2 9 4 5 0 7 1 5 4 6 8 4 0 1 4 5 4

0 0 3 7 9 4 8 6 3 9 5 0 9 1 0 3 5 4 9 1 4 4 9 7 3 2 0 6 5 7 5 0 8 5 0 7 9 4 9

3 1 0 8 3 8 6 8 4 5 9 9 8 8 5 6 6 9 7 1 8 0 5 3 1 9 6 0 4 9 8 9 5 4 1 0 2 4 1 2 7

7 9 5 0 5 5 6 2 2 9 1 8 5 2 1 3 6 3 3 0 7 1 9 5 1 9 8 0 5 7 0 1 7 2 2 0 1 9 7 1 1 6 3

3 0 1 0 4 9 4 9 6 7 4 6 5 4 4 7 3 6 8 3 7 7 6 8 3 7 6 7 4 6 8 0 4 4 3 4 0 4 5 4 9 0 1 5 7

0 0 2 9 2 7 6 8 2 9 4 7 3 0 1 1 0 9 1 3 1 4 7 2 6 7 7 8 8 6 7 5 2 5 4 7 0 7 5 1 9 3 5 0 0 4 6

9 2 1 8 6 1 8 7 6 9 3 8 8 0 3 3 2 3 8 5 5 9 8 9 6 0 2 7 5 5 8 2 4 6 8 7 5 7 7 6 1 9 1 1 4 2 3 0 7

7 5 7 8 0 3 6 4 1 5 7 8 6 6 8 5 0 6 5 4 5 2 6 5 8 7 9 9 0 8 1 1 9 2 7 4 5 7 1 1 7 7 6 8 5 1 5 8 8 9 2

7 0 4 6 6 0 9 6 2 6 3 4 1 1 4 8 3 7 7 3 7 3 9 6 0 5 1 0 9 0 6 0 5 0 8 9 8 1 5 1 8 5 4 1 3 8 4 4 5 7 5 0 3

9 9 7 9 6 7 2 3 8 6 9 3 7 6 8 5 2 8 9 4 7 6 8 3 6 9 5 4 5 4 3 0 9 1 4 1 6 7 7 1 3 8 1 1 7 7 4 2 4 1 1 7 1 6 0

3 1 2 1 4 7 2 7 3 7 1 6 6 8 2 4 1 2 9 7 9 8 6 1 2 0 5 0 4 5 7 1 5 4 2 1 7 6 6 8 1 8 6 3 7 6 1 3 5 0 9 9 7 0 3 3 4

4 2 4 2 5 8 2 2 1 0 0 4 5 9 7 9 6 7 3 5 4 0 5 1 1 7 4 7 5 6 3 8 0 5 4 8 3 9 8 6 9 3 4 9 7 3 7 5 1 1 0 7 6 4 4 6 0 5 8

Сумма для пути в примере: 176.

ЗАДАЧА 2. Пятиугольное магическое кольцо
  
24.05.09 10:47
вес: 1
сложность: 2
класс: 8-10
баллы: 300
  
попыток: 0
решили: 28

На первом рисунке треугольное "магическое" кольцо. Его "магическое" свойство заключается в том, что суммы чисел, расположенных вдоль каждого отрезка, одинаковы. В данном случае они равны 9.

Выберем наименьшее "внешнее" число, в данном случае 4, и соответствующую ему тройку (4,3,2 в данном примере). Начиная с этой тройки, будем двигаться по часовой стрелке, выписывая тройки одну за другой: 4,3,2; 6,2,1; 5,1,3. Получившаяся последовательность однозначно определяется исходным "магическим" кольцом.

Треугольное "магическое" кольцо можно заполнить 8 различными способами, а сумма троек может быть 9, 10, 11 или 12:

Сумма   Последовательность 
9          4,2,3; 5,3,1; 6,1,2
9          4,3,2; 6,2,1; 5,1,3
10        2,3,5; 4,5,1; 6,1,3
10        2,5,3; 6,3,1; 4,1,5
11        1,4,6; 3,6,2; 5,2,4
11        1,6,4; 5,4,2; 3,2,6
12        1,5,6; 2,6,4; 3,4,5
12        1,6,5; 3,5,4; 2,4,6

Каждую последовательность можно объединить в 9-значное число; минимальное такое число для 3-угольного кольца  равно 146362524.

 

 

Если числа от 1 до 10, расставить в пятиугольном кольце на втором рисунке, можно аналогичным образом сформировать 16-значную или 17-значную последовательность. Определите минимальное 17-значное число, которое можно получить описанным способом из "магического" пятиугольного кольца.

ЗАДАЧА 3. Функция Эйлера
  
24.05.09 10:47
вес: 1
сложность: 1
класс: 8-10
баллы: 200
  
попыток: 0
решили: 28

Функция Эйлера φ(n) определяется так: для любого натурального n>1 её значение равно количеству натуральных чисел, меньших n и взаимно простых с n, по определению φ(1)=1, в частности φ(9)=6 (числа 1, 2, 4, 5, 7, 8 - взаимно просты с числом 9). 

Необходимо найти число n≤=1000000, для которого отношение n2/φ(n) максимально.

ЗАДАЧА 4. Функция Эйлера и перестановки
  
24.05.09 10:47
вес: 1
сложность: 1
класс: 8-10
баллы: 100
  
попыток: 0
решили: 23

Функция Эйлера φ(n) определяется так: для любого натурального n>1 её значение равно количеству натуральных чисел, меньших n и взаимно простых с n, по определению φ(1)=1, в частности φ(9)=6 (числа 1, 2, 4, 5, 7, 8 - взаимно просты с числом 9). 

Значение функции φ(87109) = 79180 интересно тем, что оно может быть получено перестановкой цифр в аргументе функции 87109. Найти такое n, 1<n<107, для которого φ(n) является перестановкой n, а разность n-φ(n) максимальна.

ЗАДАЧА 5. Правильные несократимые дроби
  
24.05.09 10:47
вес: 1
сложность: 1
класс: 8-10
баллы: 300
  
попыток: 0
решили: 26

Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Если возьмем все правильные несократимые дроби с d ≤  8, и выпишем их в порядке возрастания, то получим следующую последовательность:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
В этом ряду дробь 3/4 - ближайшая справа от 5/7.
Если выписать таким же образом правильные несократимые дроби с d ≤ 1 000 000 000 000 в порядке возрастания, то какой числитель будет у дроби, ближайшей справа от 5/7?


Обсудить турнир (комментариев: 4 ) >> Правила >>

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.