img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: mikev решил задачу "12 делителей" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 69
Задача опубликована: 10.04.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На какое наименьшее число частей можно разрезать поверхность правильного тетраэдра так, чтобы оклеить куб без пробелов и наложений?

Задачу решили: 39
всего попыток: 53
Задача опубликована: 12.04.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Buuul (Майк Бул)

В старом районе города средняя высота зданий в 2,5 раза меньше средней высоты зданий нового района и меньше на 25% средней высоты зданий города. Найти отношение количества зданий в новом и старом районах города.

Задачу решили: 33
всего попыток: 53
Задача опубликована: 15.04.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Внутри квадрата взята произвольно точка, через которую провели прямые параллельно сторонам и диагоналям квадрата. При этом квадрат разделен на 8 частей. Обходя по часовой стрелке отношения площадей их выразились 25:9:1:1:5:9:33:x. Найдите x.

Задачу решили: 43
всего попыток: 55
Задача опубликована: 17.04.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Если 
x+\frac{1}{x}=6 и  x^2+\frac{1}{x^3}=46,

то чему равно x^3+\frac{1}{x^2}.

Задачу решили: 13
всего попыток: 24
Задача опубликована: 19.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько различных прямых можно провести через все пары точек, расположенных в узлах квадратной решетки 100х100?

Задачу решили: 39
всего попыток: 53
Задача опубликована: 22.04.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В том году, когда Вася отмечал день рождения, ему было столько лет, квадратом которых является трехзначное число, состоящее из первых трёх цифр года рождения. Вася вычислил, что если бы он родился в этот день, то был бы счастливчиком встретить один из дней своего рождения в году квадрата своего возраста. В каком году родился Вася?

Задачу решили: 47
всего попыток: 52
Задача опубликована: 24.04.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Числа от 1 до 9 записаны в некотором порядке. В каждой соседней паре вычислили среднее арифметическое значение и сложили все получившиеся результаты. Найдите максимально возможную сумму. Ответ укажите с точностью до одного знака после запятой.

Задачу решили: 3
всего попыток: 48
Задача опубликована: 26.04.19 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: zmerch

Дан квадрат ABCD. Какое мнимальное количество прямых нужно провести с помощью линейки без делений, чтобы разделить его на 5 равновеликих частей?

Задачу решили: 54
всего попыток: 90
Задача опубликована: 29.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Гимнасты одного веса построили пирамиду, изображенную на рисунке.

Пирамида гимнастов

Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.

Задачу решили: 15
всего попыток: 40
Задача опубликована: 01.05.19 08:00
Прислал: admin img
Источник: По мотивам задачи Н. Авилова "Книга"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

В ряду стоят несколько книг с разным количеством страниц. Каждая книга состоит из одной или нескольких глав и сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Если в главе более одной тетради, то все они вложены друг в друга. Первой из вложенных друг в друга тетрадей считается та, в которую вложены все остальные и т.д. Все страницы каждой книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради каждой книги равна 338.

Найдите максимально возможное общее колличество страниц во всех книгах ряда.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.