img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow предложил задачу "Сумма и факториал" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 36
всего попыток: 43
Задача опубликована: 09.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Стороны треугольника a, b, c являются целыми взаимно простыми числами и составляют арифметическую прогрессию. Самый большой угол треугольника в два раза больше самого меньшего. Найти периметр треугольника.

Задачу решили: 45
всего попыток: 53
Задача опубликована: 14.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Найти сумму всех натуральных чисел, квадрат которых представляется в виде 14...4 (единица в начале и затем несколько четверок). 

Задачу решили: 34
всего попыток: 54
Задача опубликована: 16.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найти наименьшее число N такое, что 1+22018+32018+...+N2018 - делится на 2018.

Задачу решили: 21
всего попыток: 38
Задача опубликована: 25.01.19 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На рисунке A, B, C и D - конциклические точки.

Конциклические точки

SAPD= 27, SBPC= 12, |AB| = 10.

Найдите наименьшее возможное значение площади треугольника CDP.

Задачу решили: 29
всего попыток: 60
Задача опубликована: 01.02.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: anrzej

Пусть p, q, r, s - корни уравнения с действительными коэффициентами x4-ax3+ax2+bx+c=0. Определите минимум выражения p2+q2+r2+s2.

Задачу решили: 43
всего попыток: 49
Задача опубликована: 06.02.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Три окружности единичного радиуса расположены как показано на рисунке (центры на одной прямой, соседние окружности касаются).

Три окружности

Из точки O проведена касательная к окружности с центром в точке F. Найдите длину отрезка AB.

Задачу решили: 28
всего попыток: 46
Задача опубликована: 11.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Имеется набор равносторонних треугольников из бумаги, в котором:
n треугольников со стороной 1,
(n-1) треугольников со стороной 2,
................................................
2 треугольника со стороной (n-1),
1 треугольник со стороной n. 

Оказалось, что всеми треугольниками из этого набора можно оклеить без пробелов и наложений поверхность правильного тетраэдра, длина ребра которого является натуральным числом N. При оклейке треугольники можно перегибать через ребро тетраэдра.

Сколько треугольников в этом наборе, если N принимает наименьшее возможное значение.  

Задачу решили: 33
всего попыток: 49
Задача опубликована: 06.03.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Отличное от нуля число назовём оригинальным, если оно равно целой части произведения двухсот и арксинуса разности двух его некоторых цифр. Чему равна сумма всех оригинальных чисел?

Задачу решили: 36
всего попыток: 46
Задача опубликована: 15.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Пространственный крест, изображенный на рисунке, составлен из семи единичных кубиков.

Домино

Ученик отметил вершины всех единичных кубиков этой фигуры и вычислил расстояния между парами различных вершин. Он утверждает, что ему удалось найти такие расстояния: √1, √2, √3, √4, √5, √6, √7, √8, √9, √10, √11, √12. Сколько ошибок допустил ученик?

Задачу решили: 46
всего попыток: 47
Задача опубликована: 25.03.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

x=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...++\frac{1}{\sqrt{2019}}

Вычислите целую часть x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.