img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: tubaki решил задачу "Блок" (Физика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 32
всего попыток: 426
Задача опубликована: 13.12.09 19:11
Прислал: bbny img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: ghost

Припишем каждой букве русского языка свой номер: А–1, Б–2, ..., Я–33 (включаем все: Ё, Й, Ъ, и т.д.). Попытаемся разместить на плоскости несчётное множество букв А, несчётное множество букв Б, и так до буквы Я. Одинаковые буквы могут быть разного размера, но не могут иметь общих точек. Укажите сумму номеров букв, для которых это можно сделать.

Замечания: 1) Каждая буквая — это объединение точек, отрезков и дуг окружностей; у букв нет никаких украшений, закорючек и выступов, например, буква Г состоит из двух отрезков, образующих прямой угол, буква Д — это буква П (три отрезка), стоящая на подставке, похожей на П, но более широкой и низкой, буква К — угол, примыкающий к отрезку, буква Ж — симметрия с буквой К, буква О — объединение четырёх дуг окружностей, буква З — правая половина конструкции из двух касающихся равных окружностей, стоящих друг на друге, буква Й — дуга над тремя отрезками, буква С — три дуги от буквы О, буква Р — конструкция из двух отрезков и дуги окружности, примыкающая к вертикальному отрезку вверху и посередине, буква Л — два отрезка, образующие острый угол, и т.д. 2) Бесконечное множество называется несчётным, если оно не допускает взаимно однозначного отображения на множество натуральных чисел. Например, числовая прямая, отрезок ненулевой длины, окружность и плоскость представляют собой несчётные множества точек. Ну, а рациональные числа образуют, наоборот, счётное множество.

Задачу решили: 15
всего попыток: 726
Задача опубликована: 30.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.

Задачу решили: 28
всего попыток: 403
Задача опубликована: 24.10.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Angelina

Дан треугольник ABC.

Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC.

Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED.

Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE.

И так далее по алфавиту почти до конца: последний треугольник - WXY.

Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?

Задачу решили: 22
всего попыток: 247
Задача опубликована: 09.11.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На стороне BC выпуклого четырёхугольника произвольным образом выбрана точка E. Окружности, вписанные в треугольники ABE, CDE, AED, имеют общую касательную. Найдите длину стороны AD, если AB=32, BC=36, CD=48. В ответе введите сумму минимального и максимального возможных значений.

Задачу решили: 31
всего попыток: 377
Задача опубликована: 25.03.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

Известно, что радиус вписанной в треугольнике окружности равен 6, а радиус описанной около него окружности равен 65/3.
Сколько целых значений может принимать площадь этого треугольника?

Задачу решили: 25
всего попыток: 290
Задача опубликована: 19.08.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Есть отрезок длины 100. Петя выбирает натуральное число n. Вася и Петя по очереди (первым делает ход Вася) выбирают любой из имеющихся отрезков и делят его на два отрезка произвольной длины. После своего n-го хода Петя из полученных отрезков пробует составить выпуклый многоугольник максимальной целочисленной площади. При каком минимальном n Пете удастся это сделать независимо от игры Васи.

Задачу решили: 9
всего попыток: 418
Задача опубликована: 10.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Сколько существует различных вписанных четырёхугольников ABCD, для которых AB=DA+BC=1, а величины углов DAB и ABC в градусах целочисленные?

Задачу решили: 24
всего попыток: 321
Задача опубликована: 03.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?

Задачу решили: 21
всего попыток: 339
Задача опубликована: 04.05.15 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Внутреннюю точку выпуклого четырёхугольника соединили с серединами всех его сторон. Четырёхугольник разделился на четыре четырёхугольника.  Два из них имеют площади 311 и 183. Какую минимальную целочисленную площадь мог иметь исходный четырёхугольник?

Задачу решили: 5
всего попыток: 27
Задача опубликована: 21.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Фигуру, изображенную на правильной треугольной решетке, разрежьте на несколько частей и сложите из них правильный шестиугольник. В ответе укажите наименьшее число частей.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.