img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 30
Задача опубликована: 01.09.09 00:50
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее.

Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 07.09.09 10:35
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Обозначим через S(A) сумму элементов множества A. Будем называть множество целых положительных чисел особым, если для его любых двух непустых непересекающихся подмножеств B и C выполняются следующие условия:
1) S(B) ≠ S(C), т.е. их суммы элементов не могут быть одинаковы.
2) Если B содержит больше элементов, чем C, то S(B) > S(C).
Например, множество {3,5,6,7} - особое, а множество {3,4,5,6} не является особым, так как не выполняется первое условие: 3+6 = 4+5.

Предположим, что n элементов множества расположены в строго возрастающем порядке, и нам нужно проверить, является ли оно особым. Оказывается, что при n=4 из 25 пар подмножеств достаточно всего двух сравнений, а при n=7 достаточно 73 из 966 возможных сравнений.
Сколько нужно выполнить сравнений (из 86526 возможных), чтобы выяснить, является ли особым упорядоченное по возрастанию множество, состоящее из 11 натуральных чисел?

Задачу решили: 46
всего попыток: 66
Задача опубликована: 09.09.09 09:37
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pakko

В умножении "столбиком" цифры зашифрованы "звездочками". Вместо любой "звездочки" может быть любая цифра.

      * * *
   x    * *
    -------
    * * * *
  * * * *
  ---------
  * * * * *

Сколько всего существует вариантов подстановок цифр вместо "звездочек" для данного примера?

Задачу решили: 10
всего попыток: 77
Задача опубликована: 13.09.09 07:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Квадрат размером 1024 на 1024 клетки складывается относительно вертикали сначала так, чтобы правый край наложился на левый, затем относительно горизонтали, чтобы нижний край наложился на верхний, затем снова относительно ввертикали, но чтобы левый край наложился на правый и, наконец, относительно горизонтали, чтобы верхний край наложился на нижний. Операция продолжается до тех пор, пока не останется одна клетка. Клетки пронумерованы числами по спирали: самый нижний ряд - слева направо, затем последний столбец снизу вверх, затем верхний ряд справа налево и, наконец, первый столбец сверху вниз до второй строки и так далее. Клетку с каким номером нужно отметить, чтобы в результате складывания она оказалась на самом верху?

Задачу решили: 41
всего попыток: 79
Задача опубликована: 15.09.09 08:42
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sveark (Янус Невструев)

Найдите количество значений n (1≤n1000), для которых последняя ненулевая справа цифра n! наиболее часто встречается.

Задачу решили: 19
всего попыток: 29
Задача опубликована: 17.09.09 09:49
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Изучим целые положительные решения уравнения
1/x + 1/y =1/n

при различных натуральных n.
Для  n = 4 уравнение будет иметь ровно три различных решения:
1/5 + 1/20 = 1/4
1/6 + 1/12 = 1/4
1/8 + 1/8 = 1/4

Для какого n, не превышающего 250 000, уравнение будет иметь больше всего решений?

Задачу решили: 10
всего попыток: 19
Задача опубликована: 21.09.09 08:28
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Запишем 1000 чисел подряд:

1 2 3 4 5 ... 999 1000

Между числами можно поставить либо "+" (плюс), либо "-" (минус). При некоторых комбинациях в результате вычисления может получиться ноль. Какое количество таких комбинаций существует?

Задачу решили: 8
всего попыток: 24
Задача опубликована: 21.09.09 08:30
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

При игре в дартс участники метают три коротких дротика в мишень, разделенную на двадцать равных секторов, которые пронумерованы числами от 1 до 20.

Количество заработанных очков зависит от того, куда дротик воткнулся. Попадание дротика за пределами внешнего красно-зеленого кольца  не приносит очков. Попадание дротика в черный или желтый сектор внутри этого кольца приносит очки в соответствии с номером сектора. Внешнее красно-зеленое кольцо означает удвоение числа сектора, а внутреннее  - утроение. Два концентрических круга в центре мишени образуют "яблочко". Наружный зеленый круг дает 25 очков, а внутренний красный - 50. Он считается двойным (25x2=50).

Существует несколько вариантов игры. В самом распространенном из них игроки в начале игры имеют 301 или 501 очко, а затем последовательно вычитают заработанные очки. Выигрывает тот, у кого останется ровно ноль очков. Однако победа засчитывается только в том случае, если последний бросок, сводящий число очков к нулю, был "двойным", то есть попал во внешнее красно-зеленое кольцо или в красное "яблочко". В противном случае, а также когда после серии из трех бросков получается отрицательная сумма очков или единица, вся серия не засчитывается, и счет остается прежним.

Положение, при котором участник может завершить игру, называют "чекаут" (англ. checkout). Максимальный чекаут возможен при 170 очках: T20 T20 D25 (два попадания с утроением в сектор 20 и одно попадание в красное яблочко).

Есть ровно 11 способов окончить игру при шести очках:

D3   
D1  D2   
S2  D2   
D2  D1   
S4  D1   
S1  S1  D2
S1  T1  D1
S1  S3  D1
D1  D1  D1
D1  S2  D1
S2  S2  D1

Обратите внимание, что серии D1 D2 и D2 D1 считаются различными, поскольку последние броски с удвоением у них различны. Однако комбинации S1 T1 D1 и T1 S1 D1 считаются  одинаковыми. Кроме того, мы не учитываем промахи. D3 считается тем же исходом, что и 0 D3 или 0 0 D3.
Всего существует 42336 различных способов завершить игру. При оставшихся 6 очках можно завершить игру 11 способами, при 8 - 22 способами.
А при каком количестве очков можно завершить игру наибольшим числом способов?

Задачу решили: 10
всего попыток: 36
Задача опубликована: 24.09.09 10:03
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Изучим целые положительные решения уравнения
1/x + 1/y =1/n

при различных натуральных n.
Для  n = 4 уравнение будет иметь ровно три различных решения:
1/5 + 1/20 = 1/4
1/6 + 1/12 = 1/4
1/8 + 1/8 = 1/4

Для какого n, не превышающего 15·1015, уравнение будет иметь больше всего решений?
Замечание: Эта задача - существенно усложненная версия задачи 197. Решить ее "в лоб" вряд ли удастся.

Задачу решили: 44
всего попыток: 151
Задача опубликована: 26.09.09 12:59
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите количество натуральных чисел представимых в виде nm, (n и m - натуральные, 1<n<100, 1<m<10) заканчивающихся на цифру, которая чаще всего встречается последней в десятичной записи.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.