Регистрация >>
ЗАДАЧА 193. "Экономный граф"

На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243.

Тот же граф можно представить следующей матрицей:

  A B C D E F G
A - 16 12 21 - - -
B 16 - - 17 20 - -
C 12 - - 28 - 31 -
D 21 17 28 - 18 19 23
E - 20 - 18 - - 11
F - - 31 19 - - 27
G - - - 23 11 27 -

Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.

 

Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой
wij =  wji = (69069(i - j)2(i + j))(mod 1000)

Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?

Ваш ответ:
Отправить >>
©  Diofant.ru, 2025