img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH предложил задачу "Год свиньи" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 40
Задача опубликована: 24.12.09 23:56
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Доказать, что степень двойки 2n при любом целом n>2 представляется в виде 2n=7x2+y2, где x и yнечётные целые числа.

Задачу решили: 33
всего попыток: 57
Задача опубликована: 03.01.10 23:31
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найдите действительные числа x, y и z, удовлетворяющие следующим уравнениям и неравенствам:

x–2yxy2=0, y–2zyz2=0, z–2xzx2=0, x>y>z.

В ответе укажите значение x.

Задачу решили: 61
всего попыток: 66
Задача опубликована: 08.01.10 21:54
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.

Задачу решили: 33
всего попыток: 45
Задача опубликована: 15.01.10 16:29
Прислал: min img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?

+ 55
  
Задачу решили: 122
всего попыток: 177
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 116
всего попыток: 160
Задача опубликована: 20.01.10 22:56
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: xyz (Анна Андреева)

Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.

Задачу решили: 52
всего попыток: 341
Задача опубликована: 22.01.10 23:29
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Решите уравнение xy=yx в рациональных числах. В ответе укажите количество его различных решений, удовлетворяющих неравенствам: x>y, x>11/4.

Задачу решили: 43
всего попыток: 64
Задача опубликована: 25.01.10 16:03
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)

Задачу решили: 127
всего попыток: 178
Задача опубликована: 28.01.10 01:06
Прислал: Father img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Представить сумму 1/(22−1)+1/(42−1)+1/(62−1)+1/(82−1)+...+1/(20102−1) в виде несократимой дроби. В ответе указать сумму числителя и знаменателя.

Задачу решили: 23
всего попыток: 38
Задача опубликована: 07.02.10 00:11
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Anton_Lunyov

Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.