img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 62
Задача опубликована: 22.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Прямая пересекает треугольник со сторонами 5, 7 и 9 так, что она делит пополам и его периметр, и площадь. В каком отношении она делит большую сторону треугольника? В ответе укажите отношение меньшей части к большей. 

Задачу решили: 44
всего попыток: 48
Задача опубликована: 25.02.19 08:00
Прислал: TALMON img
Источник: Аристо
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Стёрка, карандаш и тетрадь стоят вместе 100 монет. Тетрадь стоит больше чем два карандаша. Три карандаша стоят больше чем четыре стёрки. Три стёрки стоят больше чем тетрадь. Сколько монет стоит тетрадь?

Задачу решили: 31
всего попыток: 45
Задача опубликована: 27.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Натуральное n-значное число равно n-ой степени суммы его цифр. Найтите все такие числа, в  ответе укажите их сумму.

Задачу решили: 25
всего попыток: 38
Задача опубликована: 01.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке.

Домино

При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?

Задачу решили: 36
всего попыток: 41
Задача опубликована: 04.03.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Любитель математики и Абхазии придумал числовой ребус
А*Б*Х*А*З*Я=Д*Р*У*З*Ь*Я,
в котором разные буквы означают разные цифры от 1 до 9, а звездочка "*" означает умножение. Найдите число Д*Р*У*З*Ь*Я.

 

 

Задачу решили: 29
всего попыток: 40
Задача опубликована: 06.03.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Отличное от нуля число назовём оригинальным, если оно равно целой части произведения двухсот и арксинуса разности двух его некоторых цифр. Чему равна сумма всех оригинальных чисел?

Задачу решили: 36
всего попыток: 41
Задача опубликована: 08.03.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: anrzej

ΟΟ:О=О-О=О+О=О*О=X. В кружочки впишите все цифры 1-9. Найдите X.

Задачу решили: 24
всего попыток: 40
Задача опубликована: 11.03.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

В прямоугольную трапецию ABCD (угол ВАD=90°) с целочисленными сторонами и значением площади единственным образом вложен прямоугольный треугольник АВМ (АВ-гипотенуза) так, что точка М находится на боковой стороне CD. Найти наименьшее значение площади трапеции.

Задачу решили: 24
всего попыток: 26
Задача опубликована: 13.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Бесконечная последовательность квадратов со сторонами 1, 2, 3, ... через диагональные вершины "нанизаны" на ось Оy так, как показано на рисунке.

Квадраты и парабола

Докажите, что все остальные вершины этих квадратов лежат на некоторой параболе, и выясните, какую часть внутренней области этой параболы занимают квадраты.

Задачу решили: 29
всего попыток: 37
Задача опубликована: 15.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Пространственный крест, изображенный на рисунке, составлен из семи единичных кубиков.

Домино

Ученик отметил вершины всех единичных кубиков этой фигуры и вычислил расстояния между парами различных вершин. Он утверждает, что ему удалось найти такие расстояния: √1, √2, √3, √4, √5, √6, √7, √8, √9, √10, √11, √12. Сколько ошибок допустил ученик?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.